By Topic

A Non-Coherent DPSK Data Receiver With Interference Cancellation for Dual-Band Transcutaneous Telemetries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mingcui Zhou ; Dept. of Electr. Eng., Univ. of California, Santa Cruz, CA ; Mehmet Rasit Yuce ; Wentai Liu

A dual-band telemetry, which has different carrier frequencies for power and data signals, is used to maximize both power transfer efficiency and data rate for transcutaneous implants. However, in such a system, the power signal interferes with the data transmission due to the multiple magnetic couplings paths within the inductive coils. Since the power level of the transmitted power signal is significantly larger than that of the data signal, it usually requires a high-order filter to suppress the interference. This paper presents a non-coherent DPSK receiver without a high-order filter that is robust to the interference caused by the power carrier signal. The proposed scheme uses differential demodulation in the analog domain to cancel the interference signal for a dual-band configuration. The data demodulation also uses subsampling to avoid carrier synchronization circuits such as PLLs. The experimental results show that the demodulator can recover 1 and 2 Mb/s data rates at a 20 MHz carrier frequency, and it is able to cancel an interference signal that is 12 dB larger than the data signal without using complex filters. The demodulator is fabricated in a 0.35 mum CMOS process, with a power consumption of 6.2 mW and an active die area of 2.6times1.7mm2.

Published in:

IEEE Journal of Solid-State Circuits  (Volume:43 ,  Issue: 9 )