By Topic

Scalable Techniques for Transparent Privatization in Software Transactional Memory

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Virendra J. Marathe ; Dept. of Comput. Sci., Rochester Univ., Rochester, NY ; Michael F. Spear ; Michael L. Scott

We address the recently recognized privatization problem in software transactional memory (STM) runtimes, and introduce the notion of partially visible reads (PVRs) to heuristically reduce the overhead of transparent privatization. Specifically, PVRs avoid the need for a "privatization fence" in the absence of conflict with concurrent readers. We present several techniques to trade off the cost of enforcing partial visibility with the precision of conflict detection. We also consider certain special-case variants of our approach, e.g., for predominantly read-only workloads. We compare our implementations to prior techniques on a multicore Niagara1 system using a variety of artificial workloads. Our results suggest that while no one technique performs best in all cases, a dynamic hybrid of PVRs and strict in-order commits is stable and reasonably fast across a wide range of load parameters. At the same time, the remaining overheads are high enough to suggest the need for programming model or architectural support.

Published in:

2008 37th International Conference on Parallel Processing

Date of Conference:

9-12 Sept. 2008