By Topic

Clock-free nanowire crossbar architecture based on Null Convention Logic (NCL)

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bonam, R. ; Dept of ECE, Univ. of Missouri-Rolla, Rolla, MO ; Chaudhary, S. ; Yellambalase, Y. ; Minsu Choi

There have been numerous nanowire crossbar architectures proposed till date, although all of them are envisioned to be synchronous (i.e., clocked). The clock is an important part in a circuit and it needs to be connected to all the components to synchronize their operation. Considering non-deterministic nature of nanoscale integration, realizing them on a nano wire crossbar system would be quite cumbersome. Unlike the conventional clocked counterparts, a new clock-free crossbar architecture is proposed to resolve the issues with clocked counterparts in this paper, where the use of clock is eliminated from the architecture. This has been done by implementing delay-insensitive logic encoding technique called Null Convention Logic (NCL). A delay-insensitive full adder has been implemented on the proposed architecture to demonstrate the feasibility in this paper.

Published in:

Nanotechnology, 2007. IEEE-NANO 2007. 7th IEEE Conference on

Date of Conference:

2-5 Aug. 2007