By Topic

Sensorless stator flux oriented control of IMS using a new Delayed-State KF-based algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Salvatore, N. ; DEE, Politec. di Bari, Bari ; Cascella, G.L. ; Stasi, S. ; Cascella, D.

This paper proposes a new reduced delayed-state Kalman filter (DSKF) based algorithm to realize the speed-sensorless vector control of induction motor. This algorithm estimates the stator flux components in the stationary reference frame, using the derivatives of the stator flux components as mathematical model and the stator voltage equations as observation model. The DSKF-based algorithm accurately estimates the stator flux components in transient operations because the derivative of the absolute stator flux value is taken into account as a forcing term in the mathematical model, so that applications both in flux rising operations and in field weakening region are possible. The estimated stator flux components are used for stator field orientation control (SFOC) without rotor speed sensor. Experiments show that the sensorless control scheme using the new DSKF-based algorithm requires a low computational effort, is stable and effective also at low speeds.

Published in:

Power Electronics Specialists Conference, 2008. PESC 2008. IEEE

Date of Conference:

15-19 June 2008