Cart (Loading....) | Create Account
Close category search window
 

A novel snake model without re-initialization for image segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ying Zheng ; Electron. & Inf. Coll., Tongji Univ., Shanghai ; Guangyao Li ; Xiehua Sun

In this paper, we present a new variational formulation of geometric snake for image segmentation. Our formulation includes an internal energy term that penalizes the deviation of the level set function from a signed distance function and stopping term related to a particular segmentation of the image instead of gradient. They force the level set function to be close to a signed distance function, therefore completely eliminate the need of the costly re-initialization procedure. Significantly larger time step can be used for solving the evolution equation to speed up the evolution. The level set formulation is easily implemented by simple finite difference scheme that is computationally more efficient. Meanwhile not only the initial curve can be anywhere in the image, but also interior contours can be automatically detected. Experiment results on image segmentation show that our algorithm has very good performance.

Published in:

Audio, Language and Image Processing, 2008. ICALIP 2008. International Conference on

Date of Conference:

7-9 July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.