By Topic

Unscented filtering for equality-constrained nonlinear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Teixeira, B.O.S. ; Dept. of Electron. Eng., Fed. Univ. of Minas Gerais, Belo Horizonte ; Chandrasekar, J. ; Torres, L.A.B. ; Aguirre, L.A.
more authors

This paper addresses the state-estimation problem for nonlinear systems in a context where prior knowledge, in addition to the model and the measurement data, is available in the form of an equality constraint. Three novel suboptimal algorithms based on the unscented Kalman filter are developed, namely, the equality-constrained unscented Kalman filter, the projected unscented Kalman filter, and the measurement-augmented unscented Kalman filter. These methods are compared on two examples: a quaternion-based attitude estimation problem and an idealized flow model involving conserved quantities.

Published in:

American Control Conference, 2008

Date of Conference:

11-13 June 2008