By Topic

Improved Quadtree Method for Split Merge Image Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Deepali Kelkar ; M.I.T., Ujjain ; Surendra Gupta

Image segmentation is one of the important steps in Image processing. This paper introduces an improved quadtree method (IQM) for split-merge called as neighbour naming based image segmentation method (NNBISM) in Kelkar, D. and Grupta, S., (2008), where top-down and bottom-up approaches of region based segmentation techniques are chained. IQM mainly composed of splitting image, onitializing neighbour list and then merging splitted regions. First step uses quadtree for representing splitted Image. In second step neighbour list of every quadtree node, is populated using neighbour naming method (NNM). NNM works at region level, and leads to fast initialisation of adjacency information thus improving the performance of IQM for split merge image segmentation. This populated list is basis for third step which is decomposed in two phases, in-house merge and ginal merge. This decomposing reduces problems involved in handling lengthy neighbour list during merging process .

Published in:

2008 First International Conference on Emerging Trends in Engineering and Technology

Date of Conference:

16-18 July 2008