By Topic

A Parallel Direct/Iterative Solver Based on a Schur Complement Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Gaidamour ; ScAlApplix Project, INRIA Bordeaux - Sud-Ouest, Bordeaux ; P. Hénon

In this paper, we present HIPS (hierarchical iterative parallel solver) a parallel sparse linear solver that combines effectively direct and iterative methods through a Schur complement approach. The corner stone of our method is to use a special decomposition and ordering of the matrix that allows to construct a reduced system and a robust preconditioner at low memory cost. The parallelization scheme we describe is original for this type of solver and provide a natural way to find a good trade-off between memory and convergence. Eventually, we give some results obtained by our solver on large referenced test cases.

Published in:

Computational Science and Engineering, 2008. CSE '08. 11th IEEE International Conference on

Date of Conference:

16-18 July 2008