By Topic

Real-Time Divisible Load Scheduling with Advance Reservation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mamat, A. ; Dept. of Comput. Sci. & Eng., Univ. of Nebraska - Lincoln, Lincoln, NE ; Lu, Y. ; Deogun, J. ; Goddard, S.

Providing QoS and performance guarantees to arbitrarily divisible loads has become a significant problem for many cluster-based research computing facilities. While progress is being made in scheduling arbitrarily divisible loads, previous approaches have no support for advance reservations. However, with the emergence of grid applications that require simultaneous access to multi-site resources, supporting advance reservations in a cluster has become increasingly important. In this paper we propose a new divisible load real-time scheduling algorithm that supports advance reservations in a cluster. Our approach not only enforces the real-time agreement but also addresses the under-utilization concerns raised by advance reservations. The impact of advance reservations on system performance is systematically studied. Simulation results show that, with the proposed algorithm and appropriate advance reservations, the system performance could be maintained at the same level as the no reservation case.

Published in:

Real-Time Systems, 2008. ECRTS '08. Euromicro Conference on

Date of Conference:

2-4 July 2008