Cart (Loading....) | Create Account
Close category search window
 

CramÉr–Rao Bounds for Multiple Poles and Coefficients of Quasi-Polynomials in Colored Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Badeau, R. ; Dept. of Signal & Image Process., TELECOM ParisTech, Paris ; David, B. ; Richard, G.

In this paper, we provide analytical expressions of the Cramer-Rao bounds for the frequencies, damping factors, amplitudes, and phases of complex exponentials in colored noise. These expressions show the explicit dependence of the bounds of each distinct parameter with respect to the amplitudes and phases, leading to readily interpretable formulae, which are then simplified in an asymptotic context. The results are presented in the general framework of the polynomial amplitude complex exponentials (PACE) model, also referred to as the quasi-polynomial model in the literature, which accounts for systems involving multiple poles and represents a signal as a mixture of complex exponentials modulated by polynomials. This work looks further and generalizes the studies previously undertaken on the exponential and the quasi-polynomial models.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 8 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.