Cart (Loading....) | Create Account
Close category search window
 

Performance of Space–Time Codes: Gallager Bounds and Weight Enumeration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cong Ling ; Dept. of Electr. & Electron. Eng., Imperial Coll. London, London ; Li, K.H. ; Kot, A.C.

Since the standard union bound for space-time codes may diverge in quasi-static fading channels, the limit-before-average (LBA) technique has been exploited to derive tight performance bounds. However, it suffers from the computational burden arising from a multidimensional integral. In this paper, efficient bounding techniques for space-time codes are developed in the framework of Gallager bounds. Two closed-form upper bounds, the ellipsoidal bound and the spherical bound, are proposed that come close to simulation results within a few tenths of a decibel. In addition, two novel methods of weight enumeration operating on a further reduced state diagram are presented, which, in conjunction with the bounding techniques, give a thorough treatment of performance bounds for space-time codes.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 8 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.