By Topic

Reinforcement Learning in Continuous Time and Space: Interference and Not Ill Conditioning Is the Main Problem When Using Distributed Function Approximators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Bart Baddeley ; Dept. of Inf., Univ. of Sussex, Brighton

Many interesting problems in reinforcement learning (RL) are continuous and/or high dimensional, and in this instance, RL techniques require the use of function approximators for learning value functions and policies. Often, local linear models have been preferred over distributed nonlinear models for function approximation in RL. We suggest that one reason for the difficulties encountered when using distributed architectures in RL is the problem of negative interference, whereby learning of new data disrupts previously learned mappings. The continuous temporal difference (TD) learning algorithm TD(lambda) was used to learn a value function in a limited-torque pendulum swing-up task using a multilayer perceptron (MLP) network. Three different approaches were examined for learning in the MLP networks; 1) simple gradient descent; 2) vario-eta; and 3) a pseudopattern rehearsal strategy that attempts to reduce the effects of interference. Our results show that MLP networks can be used for value function approximation in this task but require long training times. We also found that vario-eta destabilized learning and resulted in a failure of the learning process to converge. Finally, we showed that the pseudopattern rehearsal strategy drastically improved the speed of learning. The results indicate that interference is a greater problem than ill conditioning for this task.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:38 ,  Issue: 4 )