By Topic

Simplified inverse filter tracking algorithm for estimating the mean trabecular bone spacing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kai Huang ; Dept. of Electron. Eng., Fudan Univ., Shanghai ; Dean Ta ; Weiqi Wang ; Lawrence H. Le

Ultrasonic backscatter signals provide useful information relevant to bone tissue characterization. Trabecular bone microstructures have been considered as quasi-periodic tissues with a collection of regular and diffuse scatterers. This paper investigates the potential of a novel technique using a simplified inverse filter tracking (SIFT) algorithm to estimate mean trabecular bone spacing (MTBS) from ultrasonic backscatter signals. In contrast to other frequency-based methods, the SIFT algorithm is a time-based method and utilizes the amplitude and phase information of backscatter echoes, thus retaining the advantages of both the autocorrelation and the cepstral analysis techniques. The SIFT algorithm was applied to backscatter signals from simulations, phantoms, and bovine trabeculae in vitro. The estimated MTBS results were compared with those of the autoregressive (AR) cepstrum and quadratic transformation (QT) . The SIFT estimates are better than the AR cepstrum estimates and are comparable with the QT values. The study demonstrates that the SIFT algorithm has the potential to be a reliable and robust method for the estimation of MTBS in the presence of a small signal-to-noise ratio, a large spacing variation between regular scatterers, and a large scattering strength ratio of diffuse scatterers to regular ones.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:55 ,  Issue: 7 )