By Topic

A Direct Product Theorem for Discrepancy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Troy Lee ; Dept. of Comput. Sci., Rutgers Univ., Newark, NJ ; Adi Shraibman ; Robert Špalek

Discrepancy is a versatile bound in communication complexity which can be used to show lower bounds in randomized, quantum, and even weakly-unbounded error models of communication. We show an optimal product theorem for discrepancy, namely that for any two Boolean functions f, g, disc(f odot g)=thetas(disc(f) disc(g)). As a consequence we obtain a strong direct product theorem for distributional complexity, and direct sum theorems for worst-case complexity, for bounds shown by the discrepancy method. Our results resolve an open problem of Shaltiel (2003) who showed a weaker product theorem for discrepancy with respect to the uniform distribution, discUodot(fodotk)=O(discU(f))k/3. The main tool for our results is semidefinite programming, in particular a recent characterization of discrepancy in terms of a semidefinite programming quantity by Linial and Shraibman (2006).

Published in:

Computational Complexity, 2008. CCC '08. 23rd Annual IEEE Conference on

Date of Conference:

23-26 June 2008