Cart (Loading....) | Create Account
Close category search window

Electricity Price Curve Modeling and Forecasting by Manifold Learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jie Chen ; Sch. of Ind. & Syst. Eng., Georgia Inst. of Technol., Atlanta, GA ; Shi-Jie Deng ; Huo, X.

This paper proposes a novel nonparametric approach for the modeling and analysis of electricity price curves by applying the manifold learning methodology-locally linear embedding (LLE). The prediction method based on manifold learning and reconstruction is employed to make short-term and medium-term price forecasts. Our method not only performs accurately in forecasting one-day-ahead prices, but also has a great advantage in predicting one-week-ahead and one-month-ahead prices over other methods. The forecast accuracy is demonstrated by numerical results using historical price data taken from the Eastern U.S. electric power markets.

Published in:

Power Systems, IEEE Transactions on  (Volume:23 ,  Issue: 3 )

Date of Publication:

Aug. 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.