By Topic

Robust Localization for Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sottile, F. ; Ist. Superiore Mario Boella, Turin ; Spirito, M.A.

Moore at al. presented in [1] a cluster-based distributed algorithm for localizing wireless sensor network (WSN) nodes in presence of range measurement noise. They introduced the notion of "robust quadrilaterals" as a means of avoiding flip ambiguities that often corrupt the results of localization algorithm. This paper1 proposes an enhancement of the algorithm presented in [1] that uses a new quadrilateral robustness test. A second novel distributed algorithm for anchor-less localization of WSN nodes in presence of range measurements noise is presented. This second algorithm reduces the total computational complexity with respect to the first two algorithms by a factor at least equal to the number of nodes in the WSN. It is made of two main steps: the first one, where a single cluster of nodes is localized, and a second one where the other unknown nodes are estimated by successive trilaterations. The original algorithm [1] and the two novel algorithms proposed in this paper are compared by means of simulations in terms of complexity, convergence and location accuracy performance.

Published in:

Sensor, Mesh and Ad Hoc Communications and Networks, 2008. SECON '08. 5th Annual IEEE Communications Society Conference on

Date of Conference:

16-20 June 2008