By Topic

Robust and Efficient Stereo Feature Tracking for Visual Odometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Andrew E. Johnson ; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA ; Steven B. Goldberg ; Yang Cheng ; Larry H. Matthies

Visual odometry can augment or replace wheel odometry when navigating in high slip terrain which is quite important for autonomous navigation on Mars. We present a computationally efficient and robust visual odometry algorithm developed for the Mars Science Laboratory mission. This algorithm is a significant improvement over the algorithm developed for the Mars Exploration Rover Mission because it is at least four time more computationally efficient and it tracks significantly more features. The core of the algorithm is an integrated motion estimation and stereo feature tracking loop that allows for feature recovery while guiding feature correlation search to minimize computation. Results on thousands of terrestrial and Martian stereo pairs show that the algorithm can operate with no initial motion estimate while still obtaining subpixel attitude estimation performance.

Published in:

Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on

Date of Conference:

19-23 May 2008