Cart (Loading....) | Create Account
Close category search window
 

ABS: Adaptive Buffer Sizing for Heterogeneous Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yueping Zhang ; NEC Labs. America Inc., Princeton, NJ ; Loguinov, D.

Most existing criteria [3], [5], [8] for sizing router buffers rely on explicit formulation of the relationship between buffer size and characteristics of Internet traffic. However, this is a non-trivial, if not impossible, task given that the number of flows, their individual RTTs, and congestion control methods, as well as flow responsiveness, are unknown. In this paper, we undertake a completely different approach that uses control- theoretic buffer-size tuning in response to traffic dynamics. Motivated by the monotonic relationship between buffer size and loss rate and utilization, we design a mechanism called Adaptive Buffer Sizing (ABS), which is composed of two Integral controllers for dynamic buffer adjustment and two gradient-based components for intelligent parameter training. We demonstrate via ns2 simulations that ABS successfully stabilizes the buffer size at its minimum value under given constraints, scales to a wide spectrum of flow populations and link capacities, exhibits fast convergence rate and stable dynamics in various network settings, and is robust to load changes and generic Internet traffic (including FTP, HTTP, and non-TCP flows). All of these demonstrate that ABS is a promising mechanism for tomorrow's router infrastructure and may be of significant interest for the ongoing collaborative research and development efforts (e.g., GENI and FIND) in reinventing the Internet.

Published in:

Quality of Service, 2008. IWQoS 2008. 16th International Workshop on

Date of Conference:

2-4 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.