By Topic

Visual Tracking by Continuous Density Propagation in Sequential Bayesian Filtering Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bohyung Han ; Mobileye Vision Technologies, Princeton ; Ying Zhu ; Dorin Comaniciu ; Larry S. Davis

Particle filtering is frequently used for visual tracking problems since it provides a general framework for estimating and propagating probability density functions for nonlinear and non-Gaussian dynamic systems. However, this algorithm is based on a Monte Carlo approach and the cost of sampling and measurement is a problematic issue, especially for high-dimensional problems. We describe an alternative to the classical particle filter in which the underlying density function has an analytic representation for better approximation and effective propagation. The techniques of density interpolation and density approximation are introduced to represent the likelihood and the posterior densities with Gaussian mixtures, where all relevant parameters are automatically determined. The proposed analytic approach is shown to perform more efficiently in sampling in high-dimensional space. We apply the algorithm to real-time tracking problems and demonstrate its performance on real video sequences as well as synthetic examples.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:31 ,  Issue: 5 )