Cart (Loading....) | Create Account
Close category search window
 

A CMOS Ku-Band 4x Subharmonic Mixer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jackson, B.R. ; Dept. of Electr. & Comput. Eng., Queen''s Univ., Kingston, ON ; Saavedra, C.E.

In this work, the design and measurement of a new 4x subharmonic mixer circuit is presented using CMOS 0.18 m technology. With an RF input signal at 12.1 GHz, and an LO signal at 3.0 GHz, an intermediate frequency of 100 MHz is produced (fIF = fRF - 4fLO). The mixer uses a modified Gilbert-cell topology with octet-phase LO switching transistors to perform the quadruple subharmonic mixing. Included in the design is an active balun for the RF signal and a circuit that generates an octet-phase LO signals from a differential input. The mixer has a conversion gain of approximately 6 dB, 1-dB compression point of -12 dBm, IIP3 of -2 dBm, and IIP2 of 17 dBm. The circuit also exhibits excellent isolation between its ports (e.g. LO-RF: 71 dB, 4LO-RF: 59 dB).

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:43 ,  Issue: 6 )

Date of Publication:

June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.