By Topic

Environmentally Stable, High Pulse Energy Yb-Doped Large-Mode-Area Photonic Crystal Fiber Laser Operating in the Soliton-Like Regime

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
You-Jian Song ; Ultrafast Laser Lab., Tianjin Univ., Tianjin ; Ming-Lie Hu ; Chang-Lei Wang ; Zhen Tian
more authors

A high pulse energy passively mode-locking fiber laser operating in the soliton-like regime is demonstrated. The laser is based on a linear cavity design. A segment of Yb-doped single-polarization large-mode-area photonic crystal fiber serves as the gain medium, and the self-starting mode-locking is achieved by a high contrast semiconductor saturable absorber mirror. The laser directly generates 600-fs pulses with 900 mW of average power at a repetition rate of 47.3 MHz, corresponding to a single pulse energy of 19 nJ. Furthermore, this fiber laser is directly used for pumping ZnTe to generate broadband terahertz radiation, resulting in a compact terahertz source.

Published in:

IEEE Photonics Technology Letters  (Volume:20 ,  Issue: 13 )