By Topic

Zero-Knowledge in the Applied Pi-calculus and Automated Verification of the Direct Anonymous Attestation Protocol

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Backes, M. ; Max Planck Inst. for Software Syst. & Saarland Univ., Saarland ; Maffei, M. ; Unruh, D.

We devise an abstraction of zero-knowledge protocols that is accessible to a fully mechanized analysis. The abstraction is formalized within the applied pi-calculus using a novel equational theory that abstractly characterizes the cryptographic semantics of zero-knowledge proofs. We present an encoding from the equational theory into a convergent rewriting system that is suitable for the automated protocol verifier ProVerif. The encoding is sound and fully automated. We successfully used ProVerif to obtain the first mechanized analysis of (a simplified variant of) the Direct Anonymous Attestation (DAA) protocol. This required us to devise novel abstractions of sophisticated cryptographic security definitions based on interactive games. The analysis reported a novel attack on DAA that was overlooked in its existing cryptographic security proof. We propose a revised variant of DAA that we successfully prove secure using ProVerif.

Published in:

Security and Privacy, 2008. SP 2008. IEEE Symposium on

Date of Conference:

18-22 May 2008