Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Algebraic Signal Processing Theory: 1-D Space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Puschel, M. ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA ; Moura, J.M.F.

In our paper titled ldquoalgebraic signal processing theory: foundation and 1-D Timerdquo appearing in this issue of the IEEE Transactions on Signal Processing, we presented the algebraic signal processing theory, an axiomatic and general framework for linear signal processing. The basic concept in this theory is the signal model defined as the triple (A,M,Phi), where A is a chosen algebra of filters, M an associated A-module of signals, and Phi is a generalization of the z-transform. Each signal model has its own associated set of basic SP concepts, including filtering, spectrum, and Fourier transform. Examples include infinite and finite discrete time where these notions take their well-known forms. In this paper, we use the algebraic theory to develop infinite and finite space signal models. These models are based on a symmetric space shift operator, which is distinct from the standard time shift. We present the space signal processing concepts of filtering or convolution, ldquoz -transform,rdquo spectrum, and Fourier transform. For finite length space signals, we obtain 16 variants of space models, which have the 16 discrete cosine and sine transforms (DCTs/DSTs) as Fourier transforms. Using this novel derivation, we provide missing signal processing concepts associated with the DCTs/DSTs, establish them as precise analogs to the DFT, get deep insight into their origin, and enable the easy derivation of many of their properties including their fast algorithms.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 8 )