Cart (Loading....) | Create Account
Close category search window
 

Investigation on the performance of UPQC-Q for voltage sag mitigation and power quality improvement at a critical load point

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Basu, M. ; Dept. of Electr. Eng., Dublin Inst. of Technol., Dublin ; Das, S.P. ; Dubey, G.K.

The unified power quality conditioner (UPQC) is one of the major custom power solutions, which is capable of mitigating the effect of supply voltage sag at the load end or at the point of common coupling (PCC) in a distributed network. It also prevents the propagation of the load current harmonics to the utility and improves the input power factor of the load. The control of series compensator (SERC) of the UPQC is such that it injects voltage in quadrature advance to the supply current. Thus, the SERC consumes no active power at steady state. The other advantage of the proposed control scheme is that the SERC can share the lagging VAR demand of the load with the shunt compensator (SHUC) and can ease its loading. The UPQC employing this type of quadrature voltage injection in series is termed as UPQC-Q. The VA requirement issues of SERC and SHUCs of a UPQC-Q are discussed. A PC-based new hybrid control has been proposed and the performance of the UPQC-Q is verified in a laboratory prototype. The phasor diagram, control block diagram, simulations and experimental results are presented to confirm the validity of the theory.

Published in:

Generation, Transmission & Distribution, IET  (Volume:2 ,  Issue: 3 )

Date of Publication:

May 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.