By Topic

Design, Fabrication, and Characterization of a Rotary Micromotor Supported on Microball Bearings

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ghalichechian, Nima ; Formfactor Inc., Livermore, CA ; Modafe, Alireza ; Beyaz, M.I. ; Ghodssi, R.

We report the design, fabrication, and characterization of a rotary micromotor supported on microball bearings. This is the first demonstration of a rotary micromachine with a robust mechanical support provided by microball-bearing technology. A six-phase bottom-drive variable-capacitance micromotor (Phi = 14 mm) is designed and simulated using the finite-element (FE) method. The stator and the rotor are fabricated separately on silicon substrates and assembled with the microballs. Three layers of low-k benzocyclobutene polymer, two layers of gold, and a silicon microball housing are fabricated on the stator. Microball housing and salient structures (poles) are etched in the rotor and are coated with a silicon carbide film that reduces the friction without which the operation was not possible. A top angular velocity of 517 r/min, corresponding to the linear tip velocity of 324 mm/s, is measured at plusmn150-V and 800-Hz excitation. This is 44 times higher than the velocity previously demonstrated for linear micromotors supported on the microball bearings. A noncontact method is developed to extract the torque and the bearing coefficient of friction through dynamic response measurements. The torque is indirectly measured to be -5.62 plusmn 0.5 muN ldr m at plusmn150-V excitation which is comparable with the FE simulation results predicting -6.75 muN ldr m. The maximum output mechanical power at plusmn150 V and 517 r/min was calculated to be 307 muW. The bearing coefficient of friction is measured to be 0.02 plusmn 0.002 which is in good agreement with the previously reported values. The rotary micromotor developed in this paper is a platform technology for centrifugal micropumps used for fuel-delivery and cooling applications.

Published in:

Microelectromechanical Systems, Journal of  (Volume:17 ,  Issue: 3 )