By Topic

Eigenvalue Beamforming Using a Multirank MVDR Beamformer and Subspace Selection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

We derive eigenvalue beamformers to resolve an unknown signal of interest whose spatial signature lies in a known subspace, but whose orientation in that subspace is otherwise unknown. The unknown orientation may be fixed, in which case the signal covariance is rank-1, or it may be random, in which case the signal covariance is multirank. We present a systematic treatment of such signal models and explain their relevance for modeling signal uncertainties. We then present a multirank generalization of the MVDR beamformer. The idea is to minimize the power at the output of a matrix beamformer, while enforcing a data dependent distortionless constraint in the signal subspace, which we design based on the type of signal we wish to resolve. We show that the eigenvalues of an error covariance matrix are fundamental for resolving signals of interest. Signals with rank-1 covariances are resolved by the largest eigenvalues of the error covariance, while signals with multirank covariances are resolved by the smallest eigenvalues. Thus, the beamformers we design are eigenvalue beamformers, which extract signal information from eigen-modes of an error covariance. We address the tradeoff between angular resolution of eigenvalue beamformers and the fraction of the signal power they capture.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 5 )