By Topic

Estimation in Gaussian Graphical Models Using Tractable Subgraphs: A Walk-Sum Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Venkat Chandrasekaran ; Massachusetts Inst. of Technol., Cambridge ; Jason K. Johnson ; Alan S. Willsky

Graphical models provide a powerful formalism for statistical signal processing. Due to their sophisticated modeling capabilities, they have found applications in a variety of fields such as computer vision, image processing, and distributed sensor networks. In this paper, we present a general class of algorithms for estimation in Gaussian graphical models with arbitrary structure. These algorithms involve a sequence of inference problems on tractable subgraphs over subsets of variables. This framework includes parallel iterations such as embedded trees, serial iterations such as block Gauss-Seidel, and hybrid versions of these iterations. We also discuss a method that uses local memory at each node to overcome temporary communication failures that may arise in distributed sensor network applications. We analyze these algorithms based on the recently developed walk-sum interpretation of Gaussian inference. We describe the walks ldquocomputedrdquo by the algorithms using walk-sum diagrams, and show that for iterations based on a very large and flexible set of sequences of subgraphs, convergence is guaranteed in walk-summable models. Consequently, we are free to choose spanning trees and subsets of variables adaptively at each iteration. This leads to efficient methods for optimizing the next iteration step to achieve maximum reduction in error. Simulation results demonstrate that these nonstationary algorithms provide a significant speedup in convergence over traditional one-tree and two-tree iterations.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 5 )