By Topic

On Siphon Computation for Deadlock Control in a Class of Petri Nets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Li, Z. ; Xidian Univ., Xi''an ; MengChu Zhou

As a structural object, siphons are well recognized in the analysis and control of deadlocks in resource allocation systems modeled with Petri nets. Many deadlock prevention policies characterize the deadlock behavior of the systems in terms of siphons and utilize this characterization to avoid deadlocks. This paper develops a novel methodology to find interesting siphons for deadlock control purposes in a class of Petri nets, i.e., a system of simple sequential processes with resources . Resource circuits in an are first detected, from which, in general, a small portion of emptiable minimal siphons can be derived. The remaining emptiable ones can be found by their composition. A polynomial-time algorithm for finding the set of elementary siphons is proposed, which avoids complete siphon enumeration. It is shown that a dependent siphon can always be controlled by properly supervising its elementary siphons. A computationally efficient deadlock control policy is accordingly developed. Experimental study shows the efficiency of the proposed siphon computation approach.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:38 ,  Issue: 3 )