By Topic

Approximate Maximum-Likelihood Period Estimation From Sparse, Noisy Timing Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Clarkson, I.V.L. ; Univ. of Queensland, Brisbane

The problem of estimating the period of a series of periodic events is considered under the condition where the measurements of the times of occurrence are noisy and sparse. The problem is common to bit synchronisation in telecommunications and pulse-train parameter estimation in electronic support, among other applications. Two new algorithms are presented which represent different compromises between computational and statistical efficiency. The first extends the separable least squares line search (SLS2) algorithms of Sidiropoulos et al., having very low computational complexity while attaining good statistical accuracy. The second is an approximate maximum-likelihood algorithm, based on a low complexity lattice search, and is found to achieve excellent accuracy.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 5 )