Cart (Loading....) | Create Account
Close category search window
 

Semisupervised Learning of Hidden Markov Models via a Homotopy Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shihao Ji ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC ; Watson, L.T. ; Carin, L.

Hidden Markov model (HMM) classifier design is considered for the analysis of sequential data, incorporating both labeled and unlabeled data for training; the balance between the use of labeled and unlabeled data is controlled by an allocation parameter lambda isin (0, 1), where lambda = 0 corresponds to purely supervised HMM learning (based only on the labeled data) and lambda = 1 corresponds to unsupervised HMM-based clustering (based only on the unlabeled data). The associated estimation problem can typically be reduced to solving a set of fixed-point equations in the form of a "natural-parameter homotopy." This paper applies a homotopy method to track a continuous path of solutions, starting from a local supervised solution (lambda = 0) to a local unsupervised solution (lambda = 1). The homotopy method is guaranteed to track with probability one from lambda = 0 to lambda = 1 if the lambda = 0 solution is unique; this condition is not satisfied for the HMM since the maximum likelihood supervised solution (lambda = 0) is characterized by many local optima. A modified form of the homotopy map for HMMs assures a track from lambda = 0 to lambda = 1. Following this track leads to a formulation for selecting lambda isin (0, 1) for a semisupervised solution and it also provides a tool for selection from among multiple local-optimal supervised solutions. The results of applying the proposed method to measured and synthetic sequential data verify its robustness and feasibility compared to the conventional EM approach for semisupervised HMM training.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 2 )

Date of Publication:

Feb. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.