Cart (Loading....) | Create Account
Close category search window
 

A distributed and scalable routing table manager for the next generation of IP routers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kim-Khoa Nguyen ; Concordia Univ., Montreal ; Jaumard, B. ; Agarwal, A.

In recent years, the exponential growth of Internet users with increased bandwidth requirements has led to the emergence of the next generation of IP routers. Distributed architecture is one of the promising trends providing petabit routers with a large switching capacity and high-speed interfaces. Distributed routers are designed with an optical switch fabric interconnecting line and control cards. Computing and memory resources are available on both control and line cards to perform routing and forwarding tasks. This new hardware architecture is not efficiently utilized by the traditional software models where a single control card is responsible for all routing and management operations. The routing table manager plays an extremely critical role by managing routing information and in particular, a forwarding information table. This article presents a distributed architecture set up around a distributed and scalable routing table manager. This architecture also comes provides improvements in robustness and resiliency. The proposed architecture is based on a sharing mechanism between control and line cards and is able to meet the scalability requirements for route computations, notifications, and advertisements. A comparative scalability evaluation is made between distributed and centralized architectures in terms of required memory and computing resources.

Published in:

Network, IEEE  (Volume:22 ,  Issue: 2 )

Date of Publication:

March-April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.