By Topic

Energy-Based Hierarchical Edge Clustering of Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hong Zhou ; Hong Kong Univ. of Sci. & Technol., Kowloon ; Xiaoru Yuan ; Weiwei Cui ; Huamin Qu
more authors

Effectively visualizing complex node-link graphs which depict relationships among data nodes is a challenging task due to the clutter and occlusion resulting from an excessive amount of edges. In this paper, we propose a novel energy-based hierarchical edge clustering method for node-link graphs. Taking into the consideration of the graph topology, our method first samples graph edges into segments using Delaunay triangulation to generate the control points, which are then hierarchically clustered by energy-based optimization. The edges are grouped according to their positions and directions to improve comprehensibility through abstraction and thus reduce visual clutter. The experimental results demonstrate the effectiveness of our proposed method in clustering edges and providing good high level abstractions of complex graphs.

Published in:

Visualization Symposium, 2008. PacificVIS '08. IEEE Pacific

Date of Conference:

5-7 March 2008