Cart (Loading....) | Create Account
Close category search window
 

The Diversity Order of the Semidefinite Relaxation Detector

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jalden, J. ; R. Inst. of Technol., Stockholm ; Ottersten, B.

In this paper, we consider the detection of binary (antipodal) signals transmitted in a spatially multiplexed fashion over a fading multiple-input-multiple-output (MIMO) channel and where the detection is done by means of semidefinite relaxation (SDR). The SDR detector is an attractive alternative to maximum-likelihood (ML) detection since the complexity is polynomial rather than exponential. Assuming that the channel matrix is drawn with independent identically distributed (i.i.d.) real-valued Gaussian entries, we study the receiver diversity and prove that the SDR detector achieves the maximum possible diversity. Thus, the error probability of the receiver tends to zero at the same rate as the optimal ML receiver in the high signal-to-noise ratio (SNR) limit. This significantly strengthens previous performance guarantees available for the semidefinite relaxation detector. Additionally, it proves that full diversity detection is also possible in certain scenarios when using a noncombinatorial receiver structure.

Published in:

Information Theory, IEEE Transactions on  (Volume:54 ,  Issue: 4 )

Date of Publication:

April 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.