By Topic

Estimation of the Temporal Evolution of the Deformation Using Airborne Differential SAR Interferometry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pau Prats ; Univ. Politec. de Catalunya, Barcelona ; Andreas Reigber ; Jordi J. Mallorqui ; Rolf Scheiber
more authors

This paper presents airborne differential synthetic aperture radar (SAR) interferometry results using a stack of 14 images, which were acquired by the Experimental SAR system of the German Aerospace Center (DLR) during a time span of 2.5 h. An advanced differential technique is used to retrieve the error in the digital elevation model and the temporal evolution of the deformation for every coherent pixel in the image. The two main limitations in airborne SAR processing are analyzed, namely, the existence of residual motion errors (RMEs) (inaccuracies in the navigation system on the order of 1-5 cm) and the accommodation of the topography and the aperture dependence on motion errors during the processing. The coupling between them is also addressed, showing that the estimation of the differential RME, i.e., baseline error, can be biased when using techniques based on the coregistration between interferometric looks. The SAR focusing chain to process the data is also presented together with the modifications in the differential interferometry processor to deal with the remaining baseline error. The detected motion of a corner reflector and the measured deformation in several agricultural fields allows one to validate the proposed techniques.

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:46 ,  Issue: 4 )