By Topic

Securing User-Controlled Routing Infrastructures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lakshminarayanan, K. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA ; Adkins, D. ; Perrig, A. ; Stoica, I.

Designing infrastructures that give untrusted third parties (such as end-hosts) control over routing is a promising research direction for achieving flexible and efficient communication. However, serious concerns remain over the deployment of such infrastructures, particularly the new security vulnerabilities they introduce. The flexible control plane of these infrastructures can be exploited to launch many types of powerful attacks with little effort. In this paper, we make several contributions towards studying security issues in forwarding infrastructures (FIs). We present a general model for an FI, analyze potential security vulnerabilities, and present techniques to address these vulnerabilities. The main technique that we introduce in this paper is the use of simple lightweight cryptographic constraints on forwarding entries. We show that it is possible to prevent a large class of attacks on end-hosts and bound the flooding attacks that can be launched on the infrastructure nodes to a small constant value. Our mechanisms are general and apply to a variety of earlier proposals such as , DataRouter, and Network Pointers.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:16 ,  Issue: 3 )