Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

On Controllability of Dependent Siphons for Deadlock Prevention in Generalized Petri Nets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Li, Z. ; Technion - Israel Inst. of Technol., Haifa ; Mi Zhao

A fair amount of research has shown the importance of siphons in the analysis and control of deadlocks in a variety of resource allocation systems by using a Petri net formalism. In this paper, siphons in a generalized Petri net are classified into elementary and dependent ones, as done for ordinary nets in our previous work. Conditions are derived under which a dependent siphon is controlled by properly supervising its elementary siphons, which indicates that the controllability of dependent siphons in an ordinary Petri net is a special case of that in a generalized one. The application of the controllability of dependent siphons is shown by considering the deadlock prevention problem for a class of resource allocation systems, namely, G-system that allows multiple resource acquisitions and flexible routings in a flexible manufacturing system with machining, assembly, and disassembly operations. We develop a monitor-based deadlock prevention policy that first adds monitors for elementary siphons only to a G-system plant model such that the resultant net system satisfies the maximal controlled-siphon property (maximal cs-property). Then, by linear programming, initial tokens in the additional monitors are decided such that liveness is enforced to the supervised system. Also, a simplified live marking relationship for a G-system between the initial tokens of the source places and those of the resource places is derived. Finally, the proposed deadlock prevention methods are illustrated by using an example.

Published in:

Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on  (Volume:38 ,  Issue: 2 )