Cart (Loading....) | Create Account
Close category search window
 

40 Gb/s Transimpedance-AGC Amplifier and CDR Circuit for Broadband Data Receivers in 90 nm CMOS

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chih-Fan Liao ; Nat. Taiwan Univ., Taipei ; Shen-Iuan Liu

High-speed front-end amplifiers and CDR circuits play critical roles in broadband data receivers as the former needs to perform amplification at high data rate and the latter has to retime the data with the extracted low-jitter clock. In this paper, the design and experimental results of 40 Gb/s transimpedance-AGC amplifier and CDR circuit are described. The transimpedance amplifier incorporates reversed triple-resonance networks (RTRNs) and negative feedback in a common-gate configuration. A mathematical model is derived to facilitate the design and analysis of the RTRN, showing that the bandwidth is extended by a larger factor compared to using the shunt-series peaking technique, especially in cases when the parasitic capacitance is dominated by the next stage. Operating at 40 Gb/s, the amplifier provides an overall gain of 2 kOmega and a differential output swing of 520 mVpp with for input spanning from to . The measured integrated input-referred noise is 3.3muArms. The half-rate CDR circuit employs a direction-determined rotary-wave quadrature VCO to solve the bidirectional-rotation problem in conventional rotary-wave oscillators. This guarantees the phase sequence while negligibly affecting the phase noise. With 40 Gb/s 231 - 1 PRBS input, the recovered clock jitter is and 0.7psrms. The retimed data exhibits 13.3 pspp jitter with BER . Fabricated in 90 nm digital CMOS technology, the overall amplifier consumes 75 mW and the CDR circuit consumes 48 mW excluding the output buffers, all from a 1.2 V supply.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:43 ,  Issue: 3 )

Date of Publication:

March 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.