By Topic

Molecular Motors: Design, Mechanism, and Control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Debashish Chowdhury ; Indian Institute of Technology

Theoretical modeling and computer simulations of molecular motors provide insight that engineers can exploit to design and control artificial nanomotors.For obvious reasons, the study of molecular motors has been a traditional area of research in molecular cell biology and biochemistry, but in recent years, it has attracted physicists' as well as engineers. Exploring the design and mechanisms of these motors from an engineering perspective requires investigating their structure and dynamics using the fundamental principles of physics at the subcellular level. The insights gained from such fundamental research could also find practical applications in designing and manufacturing artificial nanomotors - motors whose typical size is usually in the rage of a few nanometers to a few tens of nanometers. In contrast to man-made macroscopically large motors, natural nanomotors have evolved over billions of years. While discussing the design, mechanism, and control of molecular motors, this article also compares their macroscopic counterparts to emphasize common features as well as differences.

Published in:

Computing in Science & Engineering  (Volume:10 ,  Issue: 2 )