By Topic

MOMS-GA: A Multi-Objective Multi-State Genetic Algorithm for System Reliability Optimization Design Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Heidi A. Taboada ; Univ. of Texas at El Paso, El Paso ; Jose F. Espiritu ; David W. Coit

A custom genetic algorithm was developed and implemented to solve multiple objective multi-state reliability optimization design problems. Many real-world engineering design problems are multi-objective in nature, and among those, several of them have various levels of system performance ranging from perfectly functioning to completely failed. This multi-objective genetic algorithm uses the universal moment generating function approach to evaluate the different reliability or availability indices of the system. The components are characterized by having different performance levels, cost, weight, and reliability. The solution to the multi-objective multi-state problem is a set of solutions, known as the Pareto-front, from which the analyst may choose one solution for system implementation. Two illustrative examples are presented to show the performance of the algorithm; and the multi-objective formulation considered for both of them is the maximization of system availability, and the minimization of both system cost, and weight.

Published in:

IEEE Transactions on Reliability  (Volume:57 ,  Issue: 1 )