By Topic

Design and Experiments for a Class of Fuzzy Controlled Servo Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Radu-Emil Precup ; Politehnica Univ. of Timisoara (PUT), Timisoara ; Stefan Preitl ; Imre J. Rudas ; Marius L. Tomescu
more authors

This paper proposes a new fuzzy control solution employing 2-DOF proportional-integral-fuzzy controllers dedicated to a class of servo systems. The controlled plants in these systems, widely used in mechatronics applications, can be characterized by second-order dynamics with integral type. The original design method suggested here starts with linear design results in terms of the extended symmetrical optimum method accompanied by an iterative feedback tuning (IFT) algorithm. Next, these results are transferred to the fuzzy case by the modal equivalence principle. The convergence of the IFT algorithm is guaranteed by the derivation of sufficient global asymptotic stability conditions based on Krasovskii-LaSalle's invariant set theorem with quadratic Lyapunov function candidate. Real-time experimental results corresponding to a low-cost fuzzy controlled servo system validate the theoretical approaches.

Published in:

IEEE/ASME Transactions on Mechatronics  (Volume:13 ,  Issue: 1 )