By Topic

MEMS Sensor for In Situ TEM Atomic Force Microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Nafari, A. ; Chalmers Univ. of Technol., Gothenburg ; Karlen, D. ; Rusu, C. ; Svensson, Krister
more authors

Here, we present a MEMS atomic force microscope sensor for use inside a transmission electron microscope (TEM). This enables direct in situ TEM force measurements in the nanonewton range and thus mechanical characterization of nanosized structures. The main design challenges of the system and sensor are to reach a high sensitivity and to make a compact design that allows the sensor to be fitted in the narrow dimensions of the pole gap inside the TEM. In order to miniaturize the sensing device, an integrated detection with piezoresistive elements arranged in a full Wheatstone bridge was used. Fabrication of the sensor was done using standard micromachining techniques, such as ion implantation, oxide growth and deep reactive ion etch. We also present in situ TEM force measurements on nanotubes, which demonstrate the ability to measure spring constants of nanoscale systems.

Published in:

Microelectromechanical Systems, Journal of  (Volume:17 ,  Issue: 2 )