Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

System Integration and Power-Flow Management for a Series Hybrid Electric Vehicle Using Supercapacitors and Batteries

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
4 Author(s)
Yoo, H. ; Sch. of Electr. Eng. & Comput. Sci., Seoul Nat. Univ., Seoul ; Seung-Ki Sul ; Yongho Park ; Jongchan Jeong

In this paper, system integration and power-flow management algorithms for a four-wheel-driven series hybrid electric vehicle (HEV) having multiple power sources composed of a diesel-engine-based generator, lead acid battery bank, and supercapacitor bank are presented. The super-capacitor is utilized as a short-term energy storage device to meet the dynamic performance of the vehicle, while the battery is utilized as a mid-term energy storage for the electric vehicle (EV) mode operation due to its higher energy density. The generator based on an interior permanent magnet machine (IPMM), run by a diesel engine, provides the average power for the normal operation of the vehicle. Thanks to the proposed power-flow management algorithm, each of the energy sources is controlled appropriately and also the dynamic performance of the vehicle has been improved. The proposed power-flow management algorithm has been experimentally verified with a full-scale prototype vehicle.

Published in:

Industry Applications, IEEE Transactions on  (Volume:44 ,  Issue: 1 )