By Topic

A Full On-Chip CMOS Clock-and-Data Recovery IC for OC-192 Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jinghua Li ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX ; Silva-Martinez, J. ; Brunn, B. ; Rokhsaz, S.
more authors

In this paper, a fully integrated OC-192 clock-and-data recovery (CDR) architecture in standard 0.18-mum CMOS is described. The proposed architecture integrates the typically large off-chip filter capacitor by using two feed-forward paths configuration to generate zero and pole and satisfies SONET jitter requirements with a total power dissipation (including the buffers) of 290 mW. The measured RMS jitter of the recovered data is 0.74 ps with a bit-error rate less than 10-12 when the input pseudorandom bit sequence (PRBS) data pattern has a pattern length of 215 - 1 and a total horizontal eye closure of 0.54 peak-to-peak unit interval (Ulpp) due to the added intersymbol interference distortion by passing data through 9-in FR4 printed circuit board trace. The chip exceeds SONET OC-192 jitter tolerance mask, and high-frequency jitter tolerance is over 0.31 Ulpp by applying PRBS data with a pattern length of 231 - 1.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:55 ,  Issue: 5 )