By Topic

Diffusion Equations over Arbitrary Triangulated Surfaces for Filtering and Texture Applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chunlin Wu ; Univ. of Sci. & Technol. of China, Hefei ; Jiansong Deng ; Falai Chen

In computer graphics, triangular mesh representations of surfaces have become very popular. Compared with parametric and implicit forms of surfaces, triangular mesh surfaces have many advantages such as being easy to render, being convenient to store, and having the ability to model geometric objects with arbitrary topology. In this paper, we are interested in data processing over triangular mesh surfaces through partial differential equations (PDEs). We study several diffusion equations over triangular mesh surfaces and present corresponding numerical schemes to solve them. Our methods work for triangular mesh surfaces with arbitrary geometry (the angles of each triangle are arbitrary) and topology (open meshes or closed meshes of arbitrary genus). Besides the flexibility, our methods are efficient due to the implicit/semi-implicit time discretization. We finally apply our methods to several filtering and texture applications such as image processing, texture generation, and regularization of harmonic maps over triangular mesh surfaces. The results demonstrate the flexibility and effectiveness of our methods.

Published in:

Visualization and Computer Graphics, IEEE Transactions on  (Volume:14 ,  Issue: 3 )