By Topic

Structural Segmentation of Musical Audio by Constrained Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mark Levy ; Dept. of Electron. Eng., Queen Mary Univ. of London, London ; Mark Sandler

We describe a method of segmenting musical audio into structural sections based on a hierarchical labeling of spectral features. Frames of audio are first labeled as belonging to one of a number of discrete states using a hidden Markov model trained on the features. Histograms of neighboring frames are then clustered into segment-types representing distinct distributions of states, using a clustering algorithm in which temporal continuity is expressed as a set of constraints modeled by a hidden Markov random field. We give experimental results which show that in many cases the resulting segmentations correspond well to conventional notions of musical form. We show further how the constrained clustering approach can easily be extended to include prior musical knowledge, input from other machine approaches, or semi-supervision.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:16 ,  Issue: 2 )