Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Normalized Cuts for Predominant Melodic Source Separation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Lagrange, M. ; Univ. of Victoria, Victoria, BC ; Martins, L.G. ; Murdoch, J. ; Tzanetakis, G.

The predominant melodic source, frequently the singing voice, is an important component of musical signals. In this paper, we describe a method for extracting the predominant source and corresponding melody from ldquoreal-worldrdquo polyphonic music. The proposed method is inspired by ideas from computational auditory scene analysis. We formulate predominant melodic source tracking and formation as a graph partitioning problem and solve it using the normalized cut which is a global criterion for segmenting graphs that has been used in computer vision. Sinusoidal modeling is used as the underlying representation. A novel harmonicity cue which we term harmonically wrapped peak similarity is introduced. Experimental results supporting the use of this cue are presented. In addition, we show results for automatic melody extraction using the proposed approach.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:16 ,  Issue: 2 )