By Topic

A Fast, Sigma–Delta (\Sigma \Delta ) Boost DC–DC Converter Tolerant to Wide LC Filter Variations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Keskar, N.A. ; Georgia Inst. of Technol., Atlanta ; Rincon-Mora, G.A.

Power supplies in portable electronics must adapt to their highly integrated environments and, more intrinsically, respond quickly to fast load dumps. However, frequency compensation must cater to the worst case design LC combination, be it because of tolerance and/or variable design targets, limiting speed and regulation performance to the worst-case scenario, even under best case conditions. Sigma-delta (SigmaDelta) control, which addresses this issue in buck converters, has not been able to concurrently achieve both high speed and wide LC compliance in boost converters. This paper presents a dual-loop SigmaDelta boost converter whose prototype (5 plusmn5% V, 1A) was 20% faster and at least nine times more LC compliant than its leading current-mode PWM counterpart, and this without a compensation circuit. Light load efficiency, intrinsic for battery life, was also better (2% higher at 0.5 W, 600 kHz) because of lower switching losses. The tradeoffs for these benefits were higher output ripple voltage (5 V plusmn1.7%) and lower high load efficiency (less than 1.9% lower at 5 W, 300 kHz).

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:55 ,  Issue: 2 )