By Topic

Elastic Scattering Spectroscopy as a Diagnostic Tool for Apoptosis in Cell Cultures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Apoptosis, ldquoprogrammed cell death,rdquo is a cellular process exhibiting distinct biochemical and morphological changes. There is much interest regarding the role of apoptosis in cancer and the response to cancer treatment. Although apoptosis can occur spontaneously in malignant tumors and often significantly retards their growth, the initial response to successful cancer treatment is often massive apoptosis. In typical in vitro studies, current apoptosis detection methods require cell culture disruption via fixation, trypsinization, and/or staining. Our aim is to develop a nondisruptive optical method of detecting and tracking apoptosis in living cells and tissues, initially focusing on cell cultures. Such a method would allow for real-time evaluation of apoptotic progression of the same cell culture over time without perturbation or alteration. We report initial studies on the use of in vitro elastic scattering spectroscopy (ESS) to monitor changes in light-scattering properties of cells due to apoptotic morphology changes. For a sequence of times post treatment, we have measured the angle-dependent scattering at a single wavelength and also the wavelength-dependent scattering at discrete angles, of treated and control cell cultures. A novel polar nephelometer, developed in our laboratory, was used to obtain the angle-dependent scattering for the range of 90-145. Wavelength-dependent ESS measurements were made with a spectrometer, for several discrete near-forward angles. The results indicate that light scattering measurements can reliably discriminate between treated and control cells, correlating well with benchmark assays for apoptosis.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:13 ,  Issue: 6 )