By Topic

Thermal Isolation of Encapsulated MEMS Resonators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)

This paper presents an in-chip thermal-isolation technique for a micro-ovenized microelectromechanical-system resonator. Resonators with a microoven can be used for high-precision feedback control of temperature to compensate for the temperature dependence of resonator frequency over a wide temperature range. However, ovenization requires power consumption for heating, and the thermal time constant must be minimized for effective temperature control. This paper demonstrates an efficient local-thermal-isolation mechanism, which can reduce the power requirement to a few milliwatts and the thermal time constant to a few milliseconds. In this method, the mechanical suspension of the resonator is modified to provide thermal isolation and include an integrated resistive heater. This combination provides mechanical suspension, electrical heating, and thermal isolation in a compact structure that requires low heating power and has a small thermal time constant. A power consumption of approximately 12 mW for a 125degC temperature rise and a thermal time constant ranging from 7 to 10 ms is reported in this paper, which is orders of magnitude lower than that of commercially available ovenized quartz resonators. A CMOS-compatible wafer-scale encapsulation process is used to fabricate this device, and the thermal-isolation design is achieved without any modification to the existing resonator fabrication process.

Published in:

Journal of Microelectromechanical Systems  (Volume:17 ,  Issue: 1 )