By Topic

Radio Over Fiber for Picocellular Network Architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Michael Sauer ; Corning Inc., Corning ; Andrey Kobyakov ; Jacob George

We have studied RF transmission over various multimode fibers (MMFs) and a standard single-mode fiber, targeting picocellular networks for voice, data, and video applications. Bandwidth requirements of MMF links that are based on vertical-cavity surface-emitting laser (VCSEL) have been extensively studied. The performance of the radio-over-fiber link is assessed in terms of the error vector magnitude. Also conducted was a full system analysis, including the investigation of an achievable dynamic range and a noise figure for different low-cost architectures. This was compared to coax-based RF transmission. The IEEE 802.11 a/b/g standard, as well as other applications like radio frequency identification tracking, was considered. For experimental investigations, we have used both commercial wireless access points and a vector signal generator as a signal source, with two types of directly modulated VCSELs - 850-nm sources and 1310-nm high-speed uncooled single-mode AlGaInAs/InP VCSELs. A robust system performance was demonstrated in both 2.4- and 5-GHz RF bands, and record multimode and standard single-mode fiber transmission distances were achieved. A transponder design that can meet system requirements in terms of sensitivity (< -90 dBm) and spurious-free dynamic range (> 95 dBldrHz2/3) for a dual-band wireless LAN (WLAN) fiber-radio picocellular network was developed. A full 14-cell experimental WLAN system with cells of 4-m radius was implemented to study networking issues such as handoff and cochannel interference.

Published in:

Journal of Lightwave Technology  (Volume:25 ,  Issue: 11 )